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NOMENCLATURE 

dimensionless stream functions; 
dimensionless temperature profiles : 
acceleration due to gravity; 
cylinder radius ; 
radius at a point in the fluid surrounding cylinder ; 
temperature ; T,, at wall ; T,, far from cylinder ; 
azimuthal velocity ; 
radial velocity ; 
buoyancy ; 
dimensionless radial coordinate ; 
[ - Grf; 
dimensionless temperature ; 
kinematic viscosity; 
transformed azimuthal coordinate ; 
dimensionless radial coordinate ; 
azimuthal angle, measured from bottom of cylinder; 
stream function ; 
Grashof number, based on R ; 
Prandtl number. 

INTRODUCTION 

NATURAL convection from horizontal circular cylinders at 
moderate Grashof numbers exhibits considerable departures 
from the flow and heat transfer predicted by boundary-layer 
analysis. These departures are caused predominantly by 
boundary-layer curvature which is ignored in the asymptotic 
(Gr -+ co) analyses, these being cast in rectangular curvilinear 
coordinates, e.g. Hermann, Chiang and Kaye [l, 21. In 
addition, some terms in the basic equations are neglected in 
boundary-layer analysis. For boundary-layer analysis of 
convection round the circular cylinder, the expansion into 
successive pairs of simultaneous equations as described by 
Chiang and Kaye [2] is convenient to use, and the con- 
vergence scheme of Nachtsheim and Swigert [3] permits 
solution for any Prandtl number of interest through use of a 
digital computer. 

No analyses have been presented for moderate Grashof 
numbers, although some approximations have been made. 
For example, Elenbaas [4] adapted an early suggestion of 

Langmuir [S] in which a layer of fluid around the cylinder 
was considered stationary, with heat transfer occurring 
through the annular ring of fluid by conduction. Senftleben 
[6] proposed another approximate scheme. However, 
neither represents a physically correct solution. The proper 
formulation of the problem requires solution of the fwo- 
dimensional Navier-Stokes and energy equations, expressed 
most conveniently in cylindrical coordinates. These give 
rise to a momentum equation of higher order than that which 
comes from boundary-layer theory and this complicates 
computation of solutions because it requires a larger number 
of boundary values at the cylinder surface to be found by 
iteration. 

We present here a set of solutions for the basic pair of 
simultaneous equations for natural convection on a hori- 
zontal cylinder. In addition, we provide comparison of the 
temperature profile with experiments for a Grashof number 
about 103, and comparison also with heat-transfer-measure- 
ments in this region. 

ANALYSIS 

The Navier-Stokes equations in cylindrical coordinates 
(r, z, 4) are described by Schlichting [7]. The present problem 
is two-dimensional and the equation for the z-direction is 
neglected. For the remaining equations the pressure terms 
can be eliminated by cross-differentiation and subtraction 
of the I$ and r equations, after multiplication of the d- 
momentum equation by r. An appropriate stream function 
can be introduced, i.e. o = -(l/r) (aY/a+), II = (?I’/&). 
In addition, T = O(T, - T,) + T,. The Navier-Stokes 
equations, including the effect of buoyancy, are then reduced 
to 

u$(VY) + rvi(V’Y) 

=rvV%‘+ggB 

This partial differential equation can be solved by first writing 
the velocity and temperature fields as azimuthal series of 
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functions of the radial coordinate r. For the asymptotic, 

boundary-layer solution for the horizontal cylinder, two 

different azimuthal series have been introduced. Chiang 

and Kaye [2] used a Blasius-style transformation and series: 

for the dimensionless radial coordinate 

; = G&/R, 

the stream function 

Y = vGr*{cQr’,(i) + @F3(1) + }, 

and the temperature 

0 = G,,(c) + @G2([) + 

Saville and Churchill [S] introduced Goertler-style trans- 

formations for the same problem with 

4 = 1 [sin 4]* d+ 

0 = (;)* 
rGr*[sin r#~]* 

EC’ 

y = (3) 4 ‘I4 vGrli4 ([“‘4F0(o) + t9’4F,(u) + } 

0 = G,(u) + t+G,(a) + 

For both styles of transformation, the solution of the simul- 

taneous partial differential equations is reduced to the 

successive solution of a set of simultaneous pairs of ordinary 

differential equations. In both cases the first pair of ordinary 

differential equations is dominant and represents the major 

portion of the complete solution even at two radians round 

from the bottom. With the Blasius style transformation, the 

lead term (i.e. the solution of the first pair of equations) gives 

a uniform heat-transfer rate around the cylinder, but with 

the Goertler form the leading term gives a local heat-transfer 

rate which changes slowly with azimuthal angle. While the 

former is a good approximation for the cylinder, the latter 

is even better and makes the leading term more strongly 

dominant. It happens that with both styles of transformation, 

the first pair of ordinary differential equations is the same. 

The solution of this pair of equations, common to both 

formulations, can be interpreted physically in two different 

ways. In the present case, we have approached the first pair 

of ordinary differential equations using a Blasius-style 

transformation and corresponding notation with subscripts 

omitted; in this way, the Navier-Stokes equations reduce to 

F’” + [2/Q F”’ - [l/[“] F” + [l/c”] F’ - [Gr*/[‘] F’* 

- [Gr*/c] F’F” - [Gr*/c3] FF’ + [Gr*/[*] FF” 

+ [Grf/[] FF”’ + G’ = 0. (2) 

The energy equation in cylindrical coordinates can be 

expressed in terms of the same variables as 

G” + [l/c] G’ + [Gr*/iJ Pr FG’ = 0. (3) 

The known boundary conditions are F = 0, F’ = 0, 

G=l at r=R Le. ; = Gr? : F + 0, F” + 0, 
G+O as r+uc. 

In the process of solution, the three boundary values 

F”, F”’ and G’ at r=R 

must be found. This can be accomplished by iteration with a 

digital computer by seeking values which simultaneously 

make F’, F”, F”‘, G and G’ become very close to zero at a 

sufficiently large value of i. integration of equations (2) and 

(3) being carried out by a fourth-order RungeeKutta program. 
Convergence for this problem proves to be far more tedious 

than for the limiting case of boundary-layer flow where only 

two boundary values need to be found. A list of values com- 

puted for Pr = 0.72 is given in Table 1. In addition, some 

graphs have been prepared which illustrate how the solutions 

depart from the boundary-layer limit. In these graphs the 

coordinate q = [ - Gr* (i.e. the non-dimensional distance 

from the wall) has been used. 

Figure 1 illustrates the temperature profiles for a range of 

Grashof numbers down to 103. There is remarkably little 

difference which can be seen between these: but when the 

temperature gradient profiles are examined, Fig. 2, it can 

be seen that there are indeed marked differences at small 

values of 1. As the Grashof number is reduced the gradient 

at the cylinder surface increases, as does the curvature of the 

temperature profile (G”‘). The increase in the dimensionless 

heat transfer rate (proportional to G’ at r = R) as Gr 
decreases corresponds to relatively increased flow, as seen 

in Fig. 3. 

The equations above do reduce to those for a boundary 

layer as Gr + co, ofcourse, if the transformation rf = c - Gr* 

is used. 

COMPARISON WITH EXPERIMENTS 

Measurements of temperature and velocity profiles have 

been reported in the literature, but these appear to be of 

indifferent accuracy or have suffered in reproduction so that 

comparison cannot be made with sufficient precision. 

However, we had available some schheren-interferometer 

photographs of isotherms around a cylinder as part of the 

results from an investigation of the effects of sound on natural 

convection. Figure 4 shows a comparison of the temperature 

profile as determined from the interference fringe positions 

(circles), the present analysis (solid line) for the conditions 
of the experiment (Gr = 1380), and analysis for Gr --* co 

(dashed line). The comparison is very favorable. Further 

interferographs, for other Grashof numbers, processed so as 

to estimate the local heat transfer at the bottom of a heated 

cylinder were compared with the analysis and found to he 

within the experimental uncertainty, i.e. +4 per cent. The 

measured values are listed in Table 2. The increase in heat 
transfer, above the expectation from the limiting solution 

for Gr + co, that is predicted by the analysis for finite 

Grashof numbers is closely matched by measurements of 
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Table 1. Boundary values 
__~ ___ ~__ 

G’ 

Gr F” F”’ G’ 
(approxi- 
mation 

equation (4)) 

cc 0.8560 
1 X 10s 0.8775 
1 X 10’ 0.8944 
1 X lo6 0.9246 
1 x 10s 0.979 1 
3 x lo4 1.0236 
1 X lo4 1.0785 
6 X lo3 1.1099 
3 x 10s 1.1612 
1.38 x 10s 1.2306 
1 x lo3 1.2639 

- 10000 - 0.3741 
- 1.0342 - 0.3800 
- 1.0614 - 0.3846 
- 1.1109 - 0.3927 
- 1.2026 - 04068 
- 1.2798 -0.4179 
- 1.3780 -0.4311 
- 1.4357 -0.4385 
- 15313 - 0.4504 
- 1.6655 - 0.4657 
- 1.7317 - 0.4729 

-0.3741 
- 0.379 
-0.383 
-0390 
- 0402 
-0,411 
- 0.423 
- 0.429 
- 0.439 
- 0.452 
- 0.459 

overall heat transfer. The velocity measurements of Jodlbauer 

[9] include Grashof numbers in the range 8000 to 600,000. 

It is probable that these measurements are closer to the total 

velocity, (u* + u’)*, than to the azimuthal velocity. When the 

measurements are compared with the analysis given here the 

agreement is quite good even at 90” round the cylinder from 

Gr - 00 (Chmg and foye) 

FIG. 1. Temperature profiles at the bottom of a horizontal 

cylinder at finite Grashof numbers. 

the bottom, and beyond. This serves to illustrate the domin- 

ance of the solution of the first pair of equations, as mentioned 

previously, well away from the bottom. 

DISCUSSION 

If Langmuir’s method is adapted to provide approximate 

predictions of the effect of boundary layer curvature as used 

for forced convection by Richardson [lo], this indicates that 

G’ = -0.3741 (1 + 1,33Gr-* - 0.357Gr-* + }. (4) 

Values given by this expression have been entered in the 

right-hand column of Table 1. The values given by equation 

(4) are within 3 per cent of the correct values. This indicates 

that equation (4) is a useful approximation for heat transfer; 

of course, it provides no information about the corresponding 

flow. The values support the observation that departures 

from the asymptotic value for heat transfer are caused 

predominantly by boundary layer curvature. The departures 

are quite large : for a Grashof number of 10s the increase in 

heat transfer is nearly 30 per cent. The results have practical 

significance because the difference between the complete 

and the boundary-layer solutions becomes comparable with 

typical experimental uncertainty (+4 per cent, say) at a 

Grashof number which is not small (about 106). Many 

o-5 
t rGr=103 

Gr--a, (Chiong ond bye) 

FIG. 2 Temperature gradient profiles at the bottom of a 
horizontal cylinder at finite Grashof numbers. 
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FIG. 3. Profiles of azimuthal velocity at finite Grashof 
numbers. 

Table 2 

Gi- GLU Difference 
Analytical Expe%&rtal (per cent) 

1.38 X IO3 - 0.466 - 0,473 +1,5 
2.12 X lo3 - 0.457 - 0448 -2.0 
2.59 x lo3 - 0.453 - 0.462 +2.0 
3.00 X lo3 - 0.450 - 0.433 - 3.8 

_____ 

experiments and applications occur with smaller Grashof 
numbers. 
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